MICHIGAN STATE
 U N IVERSITY

Name:
NetID:

Algebra Qualifying Exam II

August 2019

Instructions:

- Read each problem carefully.
- Write legibly and in complete sentences.
- Cross off anything you do not wish graded.
- This exam has 7 pages with 6 questions, for a total of 60 points. Make sure that all pages are included.
- You may not use books, notes, or electronic devices.
- You may ask proctors questions to clarify problems on the exam.
- Graded work should only be written in the provided spaces (not on scratch paper) unless otherwise approved by a proctor.
- You have 120 minutes to complete this exam.

Good luck!

1. (10 points) Let $A=\mathbb{C}[x]$ be the ring of polynomials over \mathbb{C}. Consider a 3×3 matrix

$$
M=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

Let $V=\mathbb{C}^{3}$ be a vector space of dimension 3 . We view V as an A-module such that

$$
\forall f(x) \in A, \quad \forall \vec{v} \in V, \quad f(x) \vec{v}:=f(M) \vec{v}
$$

Prove that V is a torsion module over A, and

$$
V \cong A /\left((x-2)^{2}(x-3)\right)
$$

2. (10 points) Prove Hilbert's basis Theorem: if R is a commutative Noetherian ring, then the polynomial ring $R[X]$ is Noetherian.
3. (10 points) Consider the polynomial

$$
f(x)=5 x^{5}+6 x^{3}+6 x+21 .
$$

Let $\alpha \in \mathbb{C}$ be a complex number such that $f(\alpha)=0$.
(a) Prove that the polynomial $f(x)$ is irreducible in $\mathbb{Q}[x]$.
(b) Let $\beta=\sqrt[16]{2}$. Prove that $\alpha \notin \mathbb{Q}[\beta]$.
4. (10 points) Let $a \in \mathbb{Q}$. Prove that the number $\sin (a \pi)$ is algebraic over \mathbb{Q}.
5. (10 points) Determine the Galois group of $\mathbb{Q}[\sqrt{3}, \sqrt{5}]$ over \mathbb{Q}.
6. (10 points) Let K be a finite field consisting of q many elements, and let $f \in K[x]$ be an irreducible polynomial. Prove that f divides $x^{q^{n}}-x$ if any only if $\operatorname{deg} f$ divides n.

